Effects of the morphology of nanostructured ZnO and interface modification on the device configuration and charge transport of ZnO/polymer hybrid solar cells.
نویسندگان
چکیده
In an organic-based solar cell, the short exciton diffusion length of organic materials requires effective donor-acceptor heterojunction at the nanoscale. In this work, hybrid inorganic/polymer solar cells based on ZnO nanostructures and poly(3-hexylthiophene) (P3HT) are constructed to study the effects of ZnO morphologies and wettability of the surface on the P3HT infiltration ability and charge transport mechanisms. The P3HT infiltrates the ZnO nanorod (NR) more remarkably than ZnO nanoparticle (NP) substrates. Although surface modification with indoline D205 dye molecules improves the wettability (viz. enlarges the contact angle) of NP surface, the P3HT infiltration distance decreases in comparison with the pristine NP case. This leads to relatively low short-circuit current density (Jsc) of the NP devices in comparison with that of the NR devices, even though the surface area of NP layers is larger than that of NR ones. Moreover, surface modification with squaraine dye onto the NR surface shows more significant improvement in Jsc than the NP case. This is due to the well-aligned morphology of the NRs, which facilitates dye modification, P3HT infiltration, and charge transport processes. These indicate that the NRs are more qualified as electron accepting substrates and transport pathway in hybrid solar cells than NPs.
منابع مشابه
Further Improvement in Efficiency of ZnO Nanorod Based Solar Cells Using ZnS Quantum Dots as Light Harvester and Blocking Layer Material
Zinc oxide nanorod arrays (ZnO NRs) were grown on the ZnO seed layers via an aqueous solution using hydrothermal method and their photovoltaic properties were investigated. It was found that the growth period of 20 minutes is the optimum condition for ZnO nanorods growth, the cell containing these nanorods was considered as a reference cell. In order to further increase the cell performance, Zn...
متن کاملبهبود چگالی جریان و افزایش کارایی سلول خورشیدی پلیمری P3HT:PCBM با استفاده از نانومیله اکسید روی
Hybrid solar cells combine organic and inorganic materials with the aim of utilizing the low cost cell production of organic photovoltaics (OPV) as well as obtaining other advantages, such as tuneable absorption spectra, from the inorganic component. Whilst hybrid solar cells have the potential to achieve high power conversion efficiencies (PCE), currently obtained efficiencies are quite low. T...
متن کاملOptical properties and morphology of ZnO nanostructures and organic photovoltaic devices (October 12, 2011)
The talk will mainly concentrate on the results of optical and morphological properties of zinc oxide (ZnO) nanostructures and on some recent work on organic polymer based photovoltaic devices. Low dimensional nanostructures of ZnO have potential to improve the efficiency and compactness of electronic and photonic devices including LEDs, optical waveguides and sensors. The growth mechanism and ...
متن کاملImprovement of light harvesting by inserting an optical spacer (ZnO) in polymer bulk heterojunction solar cells: A theoretical and experimental study
By introducing a thin ZnO layer as an optical spacer, we have demonstrated that inserting this layer between an active layer and a reflective electrode results in a re-distribution of the optical electric field inside bulk heterojunction solar cells. A theoretical analysis by optical modeling showed that the thin ZnO layer could shift the position of the maximum of the electric field into the a...
متن کاملPassivating ZnO Surface States by C60 Pyrrolidine Tris-Acid for Hybrid Solar Cells Based on Poly(3-hexylthiophene)/ZnO Nanorod Arrays
Construction of ordered electron acceptors is a feasible way to solve the issue of phase separation in polymer solar cells by using vertically-aligned ZnO nanorod arrays (NRAs). However, the inert charge transfer between conducting polymer and ZnO limits the performance enhancement of this type of hybrid solar cells. In this work, a fullerene derivative named C60 pyrrolidine tris-acid is used t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 24 شماره
صفحات -
تاریخ انتشار 2013